

APSIN12G Specification 1.02 (Jan 14)

Portable 12 GHz Microwave Signal Generator

Introduction

The APSIN12G is a low-noise and fast-switching microwave signal generator covering a frequency range from 100 kHz up to 12 GHz.

The APSIN12G a wide and accurately levelled output power range and high spurious suppression. Advanced frequency synthesis with fractional-N divider makes for low SSB phase noise and micro-Hz frequency resolution.

Power level extension is available to accurately level down to -90 dBm.

The APSIN12G includes AM, DC-coupled, low distortion wideband-FM, PM, FSK and PSK, frequency chirp, and fast pulse modulation with internal pulse train generator as standard. Three internal modulations sources are available. All modulation modes of the APSIN12G can be combined. This allows the generation of complex modulation signals for modern communication and location systems. The combination of pulse modulation and FM simulates Doppler effects or chirp signals. Simultaneous AM and pulse modulation provides the types of signal occurring in pulse radar applications with rotating antenna. The combination of FM and AM can be used to check fading effects of FM receivers.

The APSIN12G allows fast analog and digital sweeps including flexible list sweeps, where frequency, power and dwell times can be set individually. A flexible triggering capability simplifies synchronization within test environments.

The APSIN12G operates with an ultra-stable temperature compensated 100 MHz reference (OCXO) to ensure minimal drift, and can be phase-locked to any stable external reference in a range from 1 to 200 MHz. Additionally, optimum phase synchronous signals can be achieved by feeding a 100 MHz reference directly as reference.

The APSIN12G support various standard interfaces such as USB-TMC, LAN, and GPIB.

It is targeted for applications where a high-quality CW microwave source with versatile modulation is required. It offers an alternative to expensive high-end microwave signal generators, where small size and excellent microwave performance at an attractive cost is required.

Signal Specifications

The specifications in the following pages describe the warranted performance of the signal generator for 23 \pm 10 °C after a 30 minute warm-up period and for all configurations (options PE3 if not explicitly stated). Typical specifications describe expected, but not warranted performance. Min and Max

specifications are warranted.						
Parameter	Min.	Тур.	Max.	Note		
CW mode						
Frequency range	100 kHz		12 GHz			
resolution		0.001 Hz				
Phase resolution		o.1 deg				
Frequency update rate		400 μ s		time from receipt of SCPI		
List/Sweep mode		400 μ s		command		
SSB Phase noise at 10 GHz						
at 1 kHz from carrier		-100 dBc/Hz				
at 20 kHz from carrier		-108 dBc/Hz				
Wideband noise		-150 dBc/ Hz				
Total jitter		100 fs RMS		BW over 10 Hz to 20 MHz		
Amplitude Noise at 10 GHz		-130 dBc/Hz		Pout=+10 dBm, 100 kHz offset		
•		-140 dBm		noise floor		
Residual FM @ 10 GHz		15 Hz		o.3 kHz to 3 kHz, weighted (ITU-T), RMS		
Residual AM @ 10 GHz		0.02 %		RMS value (o.o1 kHz to 15 kHz)		
Output power				Check maximum output power plots on page 10		
Range without option PE ₃						
100 kHz to 100 MHz	-20 dBm		+10 dBm			
100 MHz to 12 GHz	-20 dBm		+14 dBm			
Range WITH option PE3						
100 kHz to 100 MHz	-90 dBm		+10 dBm			
100 MHz to 12 GHz	-90 dBm		+13 dBm			
Level resolution		0.01 dB				
Level uncertainty, ALC on			< 1 dB	-15 to +10 dBm		
			< 1.5 dB	> -90 dBm < +10 dBm		
User flatness correction		up to 2000 points				
Output impedance		50 Ω				
VSWR		2.0				
Reverse Power Protection						
DC Voltage			±15 V			
RF power			30 dBm			
Level resolution		0.01 dB				
Spectral purity at + 5 dBm						
Output harmonics		-40 dBc	-35 dBc	0.1 to 5.0 GHz		
		-35 dBc	-30 dBc	5.0 to 12.0 GHz		
Non-harmonic spurious		-75 dBc	-6o dBc	at +5 dBm output power		

Sweeping Capability

Sweeps can be performed with combined internal or external AM/FM/PM/pulse modulation running. With modulation enabled, the minimum step time increases to 2 ms.

Parameter	Min.	Typ.	Max.	Note
Digital frequency sweep)			
Sweep type: linear, logarithmic, ւ	andom			
Step time (t _{step})	600 μ s		19998 s	
Dwell time (t _{dwell})	10 μ S		9999 s	
Off-time (incl. transient time) (t _{off})	ο / 50 μs		9999 s	
Timing accuracy per point	, ,	1 μS		
Tr <u>igge</u> r				
		RFon		RFon
	tdelay to	twell	toff	
	•	tstep		
		rarab		
-	iency, powe	-	e, and off-tim	ne for each point
allows individual setting of frequ		•		ne for each point
allows individual setting of frequ	2	•	65'000	·
allows individual setting of frequence List size Step time (t_{step})	2 600 μs	•	65'000 19998 s	·
allows individual setting of frequencies in the setting of frequencies t_{step} . Step time t_{step} Dwell time t_{dwell} Off-time (incl. transient time)	2	•	65'000	·
allows individual setting of frequenciates t_{step} . Step time (t_{step}) . Dwell time $(t_{dwell}(t_{$	2 600 μs 50 μs	•	65'000 19998 s 9999 s	·
allows individual setting of frequencial List size Step time (t_{step}) Dwell time (t_{dwell}) Off-time (incl. transient time) (t_{off})	2 600 μs 50 μs	r, dwell-time	65'000 19998 s 9999 s	·
allows individual setting of frequency List size Step time (t_{step}) Dwell time (t_{dwell}) Off-time (incl. transient time) (t_{off}) Time resolution Timing accuracy per point	2 600 μs 50 μs	r, dwell-time	65'000 19998 s 9999 s	·
allows individual setting of frequencial List size Step time (t_{step}) Dwell time (t_{dwell}) Off-time (incl. transient time) (t_{off}) Time resolution Timing accuracy per point Ramp (analog) sweep	2 600 μs 50 μs	r, dwell-time	65'000 19998 s 9999 s	ne for each point mechanical attenuator not used of carrier frequency
allows individual setting of frequency List size Step time (t_{step}) Dwell time (t_{dwell}) Off-time (incl. transient time) (t_{off}) Time resolution Timing accuracy per point	2 600 μs 50 μs	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s	mechanical attenuator not used
allows individual setting of frequencial List size Step time (t_{step}) Dwell time $(t_{dwell()})$ Off-time (incl. transient time) (t_{off}) Time resolution Timing accuracy per point Ramp (analog) sweep Sweep span	2 600 μs 50 μs 0 / 50 μs	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s 9999 s	mechanical attenuator not used
Allows individual setting of frequencial List size Step time (t _{step}) Dwell time (t _{dwell()}) Off-time (incl. transient time) (t _{off}) Time resolution Timing accuracy per point Ramp (analog) sweep Sweep span Sweep rate Sweep time	2 600 μs 50 μs 0 / 50 μs	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s 9999 s N · 5 GHz / ms	mechanical attenuator not used
allows individual setting of frequency Chirps allows individual setting of frequency Chirps List size Step time (t _{step}) Dwell time (t _{dwell(}) Off-time (incl. transient time) (t _{off}) Time resolution Timing accuracy per point Ramp (analog) sweep Sweep span Sweep rate Frequency Chirps	2 600 μs 50 μs 0 / 50 μs	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s 9999 s N · 5 GHz / ms	mechanical attenuator not used
allows individual setting of frequency List size Step time (t _{step}) Dwell time (t _{dwell(})) Off-time (incl. transient time) (t _{off}) Time resolution Timing accuracy per point Ramp (analog) sweep Sweep span Sweep rate Sweep time Frequency Chirps	2 600 μs 50 μs 0 / 50 μs	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s 9999 s N · 5 GHz / ms	mechanical attenuator not used
Step time (t _{step}) Dwell time (t _{dwell()}) Off-time (incl. transient time) (t _{off}) Time resolution Timing accuracy per point Ramp (analog) sweep Sweep span Sweep rate Sweep time Frequency Chirps (linear ramp, up/down)	2 600 μs 50 μs 0 / 50 μs tbd	r, dwell-time ο.1 μs 1 μs	65'000 19998 s 9999 s 9999 s N · 5 GHz / ms	mechanical attenuator not used

Notes:

Reference Frequency
REF IN input and REF OUT output are at rear panel

Parameter	Min.	Тур.	Max.	Note
Internal reference frequency		100 MHz		
Initial accuracy			±40 ppb	calibrated at 23 ± 3 °C at time of calibration
Temperature stability (o to 50 degC)			±100 ppb	
Aging 1 st year		o.5 ppm		
Aging per day (after 3 odays operations)			5 ppb	
Warm-Up time		5 min		
Output of internal reference		10 MHz		<= SN xxx-xx4xxxxxx-xxxx
		10/100 MHz		>= SN xxx-xx5xxxxxx-xxxx
Output power		o dBm		
Output impedance		50 Ohms		
Bypass Internal reference				
Input	100 N	MHz, -5 to +10	dBm	
Phase Lock to External Reference				
External Input Range	8 MHz		250 MHz	<= SN xxx-xx4xxxxxx-xxxx
	1 MHz		250 MHz	>= SN xxx-xx5xxxxxx-xxxx User programmable
Reference input level	-5 dBm	o dBm	+13 dBm	
Lock Range			±1.0 ppm	
Reference input impedance	-	50 Ohms	_	

Multi Purpose Output (FUNC OUT) Output is FUNC OUT at rear panel

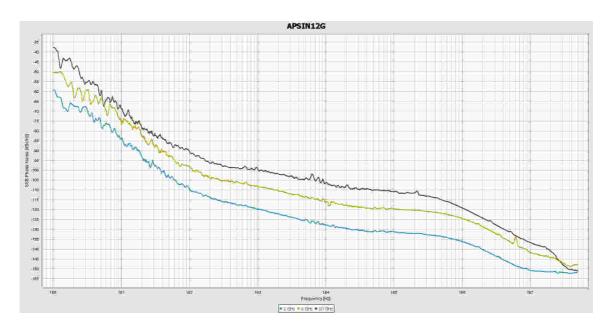
Parameter	Min.	Тур.	Max.	Note
MULTIFUNCTION GENERATOR	sine,	triangle, squa	are wave	
Frequency range	1 Hz		3 MHz	sine
rrequency range				
	1 Hz		1 MHz	triangle
			50 kHz	square
Frequency resolution		0.1 Hz		
Output voltage amplitude	10 mV		2 V	Sine, triangle
peak-peak		5V		Square (CMOS output)
Harmonic Distortion		1 %		< 100 kHz, 1 Vpp
Output impedance		50 Ohms		Sine, triangle
		CMOS		square wave
VIDEO OUTPUT (of internal puls	e modulato	or)		
Output		CMOS		
Period	30 ns		50 S	
Pulse Width	15 ns		50 S	
RF delay		10 ns		

Parameter	Min.	Typ.	Max.	Note	
TRIGGER OUT Synchronization mode for multiple sources					
Modes	Trigger on sweep start				
	Trigger on each point				
Trigger waveform pulse width	100 ns				

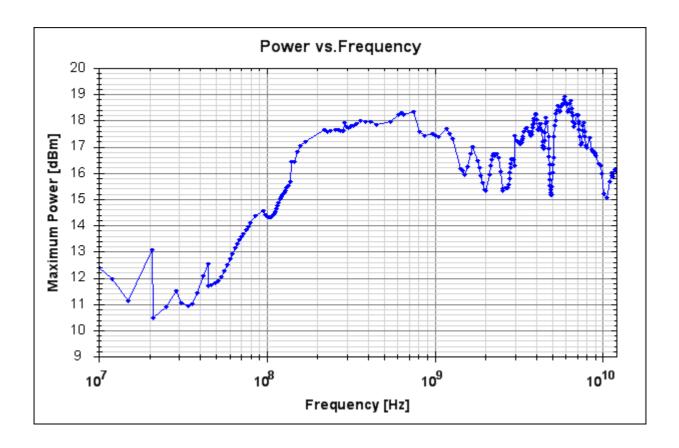
Trigger (TRIG IN) Input is TRIG IN at rear panel

Parameter	Min.	Typ.	Max.	Note
Trigger Types	Continu	ious, single, ga direction	ated, gated	
Trigger Source	RF key,	external, bus USB)	(GPIB, LAN,	
Trigger Modes		ious free run, run, reset and		
Trigger latency		tbd		
Trigger uncertainty		5 μ s		
External Trigger delay	50 μ s		40 S	
External Delay Resolution		15 ns		
Trigger Modulo	1		255	Execute only on Nth trigger event
Trigger Polarity		Rising, fallin	g	

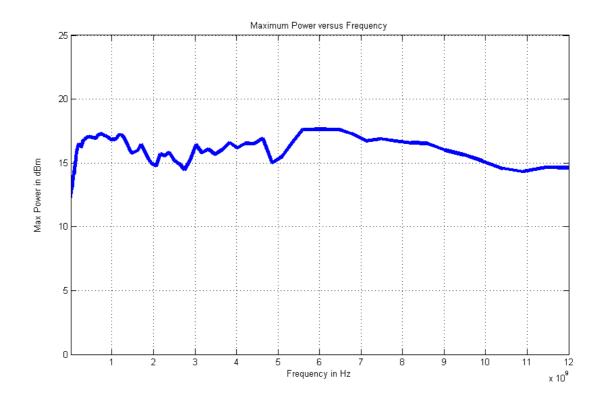
Modulation Capabilities


Parameter	Min.	Тур.	Max.	Note
Multifunction Generator s	ine, trian	gle, square wa	ave	
Output is FUNC OUT at rear pane	el			
Frequency range	1 Hz		3 MHz	sine
	1 Hz		1 MHz	triangle
			50 kHz	square
Frequency resolution		0.1 Hz		
Output voltage amplitude	10 mV		2 V	Sine, triangle
peak-peak		5V		Square (CMOS output)
Harmonic Distortion		1 %		< 100 kHz, 1 Vpp
Output impedance		50 Ohms		Sine, triangle
		CMOS		square wave
Pulse Modulation				
On/off ratio		8o dB		
Repetition frequency	DC		10 MHz	
Pulse width	30 ns			ALC hold
	50 μ s			ALC on
Pulse rise/fall time		< 10 ns		
Pulse trains length (pulses)	2		4192	
Pulse width	30 ns		100 μ S	
Pulse resolution		15 ns		
Polarity		selectable		
External input amplitude		1 V		AC
		TTL		DC
Frequency Modulation		> 0.05·f		< 1.25 GHz
Maximum Frequency deviation		N · 200 MH	z	1.25 GHz to 2.5 GHz (N=0.125)
(peak)				2.5 GHz to 5 GHz (N=0.25)
				5 GHz to 12 GHz (N=0.5)
Modulation rate	DC		800 kHz	> -3dB frequency response
Modulation waveforms	!	Sine, triangle,	FSK	
External input sensitivity				
AC		to N · 200 MH		adjustable for ±1 V range
DC	О	to N · 100 MH	lz / V	discr. values ; ±5 V range
Total harmonic distortion		< 1%		1 kHz rate & N·1 MHz deviation
Phase Modulation				
Phase deviation (peak)	О		N⋅300 rad	
Modulation rate	DC		800 kHz	> -3dB frequency response
Modulation waveforms		Sine, triangle,	FSK	
External Input sensitivity		e o.1 rad/V to		
Total harmonic distortion		< 1%		1 kHz rate & N x 100 rad deviation

Parameter	Min.	Тур.	Max.	Note
Amplitude Modulation				
Modulation rate	0.1 Hz		20 kHz	
Modulation waveforms	Sine, triangle, square		quare	
Modulation depth	o %		90 %	
Distortion (sine wave)		2 %		at 60% modulation depth
Accuracy		4 %		


Notes:

Typical performance curves


Phase Noise Performance(1 GHz blue, 4 GHz yellow, 12 GHz brown)

Typical Maximum Output Power (WITHOUT option PE₃)

Typical Maximum Output Power (WITH option PE3 installed)

Connectors

Front panel:

- 1. RF output: SMA female
- 2. RF on/off button
- 3. Rotary knob
- 4. Menu and $\downarrow \uparrow \leftarrow \rightarrow$ arrow keys

Rear panel:

- 1. Trigger input: BNC female
- 2. Function output: BNC female
- 3. External reference input: BNC female
- 4. Internal reference output: BNC female
- 5. FM/PM modulation input: BNC female
- 6. AM and Pulse modulation: BNC female
- 7. LAN connection: RJ-45
- 8. USB 2.0 host and device
- 9. GPIB: IEEE-488.2, 1987 with listen and talk (optional)
- 10. DC Power plug (6V, 2.5A)
- 11. DC power switch

General Characteristics

Remote programming interfaces

Ethernet 100BaseT LAN interface, USB 2.0 host & device GPIB (IEEE-488.2,1987) with listen and talk (optional) Control language SCPI Version 1999.0

Power requirements 6 VDC; 20 W maximum Mains adapter supplied: 100-240 VAC in/ 6V 6A DC out Operating temperature range o to 40 °C Storage temperature range -40 to 70 °C Operating and storage altitude up to 15,000 feet

CE notice

Safety/EMC complies with applicable Safety and EMC regulations and directives.

Weight \leq 2.5 kg (6 lbs) net, \leq 4 kg (8 lb.) shipping Dimensions 106 mm H x 172 mm W x 270 mm L (incl. connectors) [4.21 in H x 6.77 in W x 10.63 in L]

Recommended calibration cycle 24 months

Options

- PE3: Extended power range down to <-90 dBm) step attenuator module
- B3: battery module
- GPIB: IEEE-488.2,1987 programming interface

• RM: 19" rackmount enclosure: good for one or two adjacent APSIN

Document History

Version/Status	Date	Author	Notes
V10	2013-05-1	jk	first release
V101	2013-08-10	jk	Plots added, refined power level specifications
V102	2014-01-21	jk	corrected dimensions